List of Refereed Publications

Jonathan Chappelon

1. A universal sequence of integers generating balanced Steinhaus figures modulo an odd number, accepted for publication in J. Combin. Theory Ser. A, 30 pages.

Abstract

In this paper, we partially solve an open problem, due to J.C. Molluzzo in 1976, on the existence of balanced Steinhaus triangles modulo a positive integer n, that are Steinhaus triangles containing all the elements of $\mathbb{Z} / n \mathbb{Z}$ with the same multiplicity. For every odd number n, we build an orbit in $\mathbb{Z} / n \mathbb{Z}$, by the linear cellular automaton generating the Pascal triangle modulo n, which contains infinitely many balanced Steinhaus triangles. This orbit, in $\mathbb{Z} / n \mathbb{Z}$, is obtained from an integer sequence called the universal sequence. We show that there exist balanced Steinhaus triangles for at least $2 / 3$ of the admissible sizes, in the case where n is an odd prime power. Other balanced Steinhaus figures, such as Steinhaus trapezoids, generalized Pascal triangles, Pascal trapezoids or lozenges, also appear in the orbit of the universal sequence modulo n odd. We prove the existence of balanced generalized Pascal triangles for at least $2 / 3$ of the admissible sizes, in the case where n is an odd prime power, and the existence of balanced lozenges for all admissible sizes, in the case where n is a square-free odd number.

MSC2010: 05B30, 11B50.
Keywords: Molluzzo problem, balanced Steinhaus figure, universal sequence, Steinhaus figure, Steinhaus triangle, Pascal triangle.
2. On the multiplicative order of a^{n} modulo n, J. Integer Seq. 13 (2010), Article 10.2.1, 14 pages.

Abstract

Let n be a positive integer and α_{n} be the arithmetic function which assigns the multiplicative order of a^{n} modulo n to every integer a coprime to n and vanishes elsewhere. Similarly, let β_{n} assign the projective multiplicative order of a^{n} modulo n to every integer a coprime to n and vanishes elsewhere. In this paper, we present a study of these two arithmetic functions. In particular, we prove that for positive integers n_{1} and n_{2} with the same square-free part, there exists an exact relationship between the functions $\alpha_{n_{1}}$ and $\alpha_{n_{2}}$ and between the functions $\beta_{n_{1}}$ and $\beta_{n_{2}}$. This allows us to reduce the determination of α_{n} and β_{n} to the case where n is square-free. These arithmetic functions recently appeared in the context of an old problem of Molluzzo, and more precisely in the study of which arithmetic progressions yield a balanced Steinhaus triangle in $\mathbb{Z} / n \mathbb{Z}$ for n odd.

MSC2000: 11A05, 11A07, 11A25.
Keywords: multiplicative order, projective multiplicative order, balanced Steinhaus triangles, Steinhaus triangles, Molluzzo's Problem.
3. Regular Steinhaus graphs of odd degree, Discrete Math. 309 (13), pp. 4545-4554, 2009.

Abstract

A Steinhaus matrix is a binary square matrix of size n which is symmetric, with a diagonal of zeros, and whose upper-triangular coefficients satisfy $a_{i, j}=a_{i-1, j-1}+a_{i-1, j}$ for all $2 \leqslant i<j \leqslant n$. Steinhaus matrices are determined by their first row. A Steinhaus graph is a simple graph whose adjacency matrix is a Steinhaus matrix. We give a short new proof of a theorem, due to Dymacek, which states that even Steinhaus graphs, i.e. those with all vertex degrees even, have doubly-symmetric Steinhaus matrices. In 1979 Dymacek conjectured that the complete graph on two vertices K_{2} is the only regular Steinhaus graph of odd degree. Using Dymacek's theorem, we prove that if $\left(a_{i, j}\right)_{1 \leqslant i, j \leqslant n}$ is a Steinhaus matrix associated with a regular Steinhaus graph of odd degree then its sub-matrix $\left(a_{i, j}\right)_{2 \leqslant i, j \leqslant n-1}$ is a multi-symmetric matrix, that is a doubly-symmetric matrix where each row of its upper-triangular part is a symmetric sequence. We prove that the multi-symmetric Steinhaus matrices of size n whose Steinhaus graphs are regular modulo 4 , i.e. where all vertex degrees are equal modulo 4 , only depend on $\lceil n / 24\rceil$ parameters for all even numbers n, and on $\lceil n / 30\rceil$ parameters in the odd case. This result permits us to verify Dymacek's conjecture up to 1500 vertices in the odd case.

Keywords : Steinhaus graph, Steinhaus matrix, Steinhaus triangle, Regular graph, Regular Steinhaus graph, Dymacek's conjecture.
4. On a problem of Molluzzo concerning Steinhaus triangles in finite cyclic groups, Integers 8 (2008), Article A37, 29 pages.

Abstract : Let X be a finite sequence of length $m \geqslant 1$ in $\mathbb{Z} / n \mathbb{Z}$. The derived sequence ∂X of X is the sequence of length $m-1$ obtained by pairwise adding consecutive terms of X. The collection of iterated derived sequences of X, until length 1 is reached, determines a triangle, the Steinhaus triangle ΔX generated by the sequence X. We say that X is balanced if its Steinhaus triangle ΔX contains each element of $\mathbb{Z} / n \mathbb{Z}$ with the same multiplicity. An obvious necessary condition for m to be the length of a balanced sequence in $\mathbb{Z} / n \mathbb{Z}$ is that n divides the binomial coefficient $\binom{m+1}{2}$. It is an open problem to determine whether this condition on m is also sufficient. This problem was posed by Hugo Steinhaus in 1963 for $n=2$ and generalized by John C. Molluzzo in 1976 for $n \geqslant 3$. So far, only the case $n=2$ has been solved, by Heiko Harborth in 1972. In this paper, we answer positively Molluzzo's problem in the case $n=3^{k}$ for all $k \geqslant 1$. Moreover, for every odd integer $n \geqslant 3$, we construct infinitely many balanced sequences in $\mathbb{Z} / n \mathbb{Z}$. This is achieved by analysing the Steinhaus triangles generated by arithmetic progressions. In contrast, for any n even with $n \geqslant 4$, it is not known whether there exist infinitely many balanced sequences in $\mathbb{Z} / n \mathbb{Z}$. As for arithmetic progressions, still for n even, we show that they are never balanced, except for exactly 8 cases occurring at $n=2$ and $n=6$.

